If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-78=0
a = 1; b = 3; c = -78;
Δ = b2-4ac
Δ = 32-4·1·(-78)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{321}}{2*1}=\frac{-3-\sqrt{321}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{321}}{2*1}=\frac{-3+\sqrt{321}}{2} $
| -8v-12v-18=-62 | | 8v-12-18=-62 | | (21-x)/4=x/8 | | 3u=2u=20 | | A=6(15r-14) | | (3x-8)^4*(x-1)^3*(x+1)=0 | | 8x+52=32 | | -8+2w=-14 | | 8x-20=-2x | | 2(x-2)-2x=3x-(x-2) | | 4^(2n-3)=3^(n) | | 5/(n+6)=10/n | | C=5z+20 | | 2z-11+2z-14+3z=180 | | 5x-18-8x-5=180 | | -24=4(-4)-6x | | 2u+2u-6+u+20=180 | | 73+73+x=180 | | 17=6c-11 | | 6.3w-6=-1.5 | | p-19+2p-20+33=180 | | t+15+2t-17+2t=180 | | -3(2x-5)-4=2(-4x-6) | | x^2-35=3x | | x+4=20-x-x=4-3 | | 4x^2-2x=3=0 | | t+15+2t–17+2t=180 | | -3x(2x-5)-4=2(-4x-6) | | 4(y-8)=-16 | | 41+44p+26+26p+45=180 | | 2g-2/2=-46 | | 15/2x=15/4 |